Turing complete
A system is Turing complete if it can perform any computational task that can be described by a Turing machine, given unlimited time and memory.
In other words, a programming language, a virtual machine, or a computational model is Turing complete if it can simulate any other computational system. This means that, with sufficient resources, it can solve any algorithmically solvable problem.
Examples: most modern programming languages (Python, Java, C++) are Turing complete. Surprisingly, some unconventional systems such as Minecraft Redstone or Conway’s Game of Life are also Turing complete.
More information: Wikipedia (English)
Why is it important?
- Defines the boundary of what is computationally possible.
- Core concept in theoretical computer science.
- Shows how simple systems can match the computational power of universal computers.
References
- Scarfe, P., Watcham, K., Clarke, A., & Roesch, E. (2024). A real-world test of artificial intelligence infiltration of a university examinations system: A “Turing test” case study. PLoS One, 19(6) doi:https://doi.org/10.1371/journal.pone.0305354
- Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2006). Introduction to automata theory, languages, and computation (3rd ed.). Pearson.
- Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 2(42), 230–265.
- Wikipedia. (n.d.). Turing completeness. In Wikipedia. Retrieved from <a href=”https://en.wikipedia.org/wiki/Turing_completeness” target=”_blank” rel=”noopener noreferrer”>https://en.wikipedia.org/wiki/Turing_completeness</a>
- Viquipèdia. (n.d.). Turing complet. In Viquipèdia. Retrieved from <a href=”https://ca.wikipedia.org/wiki/Turing_complet” target=”_blank” rel=”noopener noreferrer”>https://ca.wikipedia.org/wiki/Turing_complet</a>